Building effective models from sparse but precise data: Application to an alloy cluster expansion model
نویسندگان
چکیده
A common approach in computational science is to use a set of highly precise but expensive calculations to parameterize a model that allows less precise but more rapid calculations on larger-scale systems. Leastsquares fitting on a model that underfits the data is generally used for this purpose. For arbitrarily precise data free from statistic noise, e.g., ab initio calculations, we argue that it is more appropriate to begin with an ensemble of models that overfit the data. Within a Bayesian framework, a most likely model can be defined that incorporates physical knowledge, provides error estimates for systems not included in the fit, and reproduces the original data exactly. We apply this approach to obtain a cluster expansion model for the CaZr1−xTixO3 solid solution.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملBayesian uncertainty quantification in the evaluation of alloy properties with the cluster expansion method
Parametrized surrogate models are used in alloy modeling to quickly obtain otherwise expensive properties such as quantum mechanical energies, and thereafter used to optimize, or simply compute, some alloy quantity of interest, e.g., a phase transition, subject to given constraints. Once learned on a data set, the surrogate can compute alloy properties fast, but with an increased uncertainty co...
متن کاملHow Effectiveness Of Comprehensive Performance Measurement Systems on Manager's Performance Through Modification of Mental Models (Learning Process)
One of the ways to reduce agency costs is to plan for the creation of effective decision-making information by designing appropriate comprehensive performance evaluation systems according to managers' learning process One of the important factors in the processing and classification of information for cognitive learning is mental models that are categorized in two dimensions of mental model co...
متن کاملConstruction of ground-state preserving sparse lattice models for predictive materials simulations
First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010